Physics A

PHYA4

Unit 4 Fields and Further Mechanics

Data and Formulae Booklet

DATA FUNDAMENTAL CONSTANTS AND VALUES

Quantity	Symbol	Value	Units
speed of light in vacuo	c	3.00×10^{8}	$\mathrm{m}\;\mathrm{s}^{-1}$
permeability of free space	$\mu_{ m o}$	$4\pi\times10^{-7}$	$\mathrm{H}\;\mathrm{m}^{-1}$
permittivity of free space	$\mathcal{E}_{ ext{o}}$	8.85×10^{-12}	$F\ m^{-1}$
charge of electron	e	-1.60×10^{-19}	C
the Planck constant	h	6.63×10^{-34}	J s
gravitational constant	G	6.67×10^{-11}	$N\;m^2\;kg^{-2}$
the Avogadro constant	$N_{ m A}$	6.02×10^{23}	mol^{-1}
molar gas constant	R	8.31	$J \ K^{-1} \ mol^{-1}$
the Boltzmann constant	k	1.38×10^{-23}	$J \ K^{-1}$
the Stefan constant	σ	5.67×10^{-8}	$W\ m^{-2}\ K^{-4}$
the Wien constant	α	2.90×10^{-3}	m K
electron rest mass (equivalent to 5.5×10^{-4} u)	$m_{ m e}$	9.11×10^{-31}	kg
electron charge/mass ratio	$e/m_{\rm e}$	1.76×10^{11}	$\mathrm{C}\;\mathrm{kg}^{-1}$
proton rest mass (equivalent to 1.00728 u)	$m_{ m p}$	$1.67(3) \times 10^{-27}$	kg
proton charge/mass ratio	$e/m_{\rm p}$	9.58×10^{7}	$\mathrm{C}\;\mathrm{kg}^{-1}$
neutron rest mass (equivalent to 1.00867 u)	$m_{ m n}$	$1.67(5) \times 10^{-27}$	kg
gravitational field strength	g	9.81	$N\;kg^{-1}$
acceleration due to gravity	g	9.81	$\mathrm{m}\;\mathrm{s}^{-2}$
atomic mass unit (1u is equivalent to 931.3 MeV)	u	1.661×10^{-27}	kg

ASTRONOMICAL DATA

Body	Mass/kg	Mean radius/m
Sun	1.99×10^{30}	6.96×10^{8}
Earth	5.98×10^{24}	6.37×10^{6}

GEOMETRICAL EQUATIONS

_	
arc length	$= r\theta$
circumference of circle	$=2\pi r$
area of circle	$=\pi r^2$
surface area of cylinder	$=2\pi rh$
volume of cylinder	$=\pi r^2h$
area of sphere	$=4\pi r^2$
volume of sphere	$=\frac{4}{3}\pi r^3$

AS FORMULAE

PARTICLE PHYSICS

Rest energy values

itest eller	Sy variates		
class	пате	symbol	rest energy /MeV
photon	photon	γ	0
lepton	neutrino	$v_{\rm e}$	0
		v_{μ}	0
	electron	v_{μ} $e^{\frac{\pm}{e}}$	0.510999
	muon	u^{\pm}	105.659
mesons	π meson	π^{\pm}	139.576
		π^0	134.972
	K meson	K^{\pm}	493.821
		K^0	497.762
baryons	proton	p	938.257
	neutron	n	939.551

Properties of quarks

antiquarks have opposite signs

type	charge	baryon number	strangeness
u	$+\frac{2}{3}e$	$+\frac{1}{3}$	0
d	$-\frac{1}{3}e$	$+\frac{1}{3}$	0
S	$-\frac{1}{3}e$	$+\frac{1}{3}$	-1

Properties of Leptons

	lepton number
particles: e^- , v_e ; μ^- , v_μ	+1
antiparticles: $e^+, \overline{v_e}^-$; $\mu^+, \overline{v_\mu}$	-1

Photons and Energy Levels

photon energy	$E = hf = hc / \lambda$
photoelectricity	$hf = \phi + E_{K \text{ (max)}}$
energy levels	$hf = E_1 - E_2$
de Broglie Wavelength	$\lambda = \frac{h}{p} = \frac{h}{mv}$

ELECTRICITY

current and
$$I=\frac{\Delta Q}{\Delta t}$$
 $V=\frac{W}{Q}$ $R=\frac{V}{I}$ emf $\varepsilon=\frac{E}{Q}$ $\varepsilon=I(R+r)$

resistors in series
$$R = R_1 + R_2 + R_3 + \dots$$

resistors in parallel
$$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots$$

resistivity
$$\rho = \frac{RA}{I}$$

power
$$P = VI = I^{2}R = \frac{V^{2}}{P}$$

alternating current
$$I_{\rm rms} = \frac{I_0}{\sqrt{2}}$$
 $V_{\rm rms} = \frac{V_0}{\sqrt{2}}$

MECHANICS

momentsmoment = Fdvelocity and
acceleration
$$v = \frac{\Delta s}{\Delta t}$$
 $a = \frac{\Delta v}{\Delta t}$ equations of motion $v = u + at$ $s = \frac{(u + v)}{2}t$

$$v^2 = u^2 + 2as \qquad s = ut + \frac{at^2}{2}$$

force
$$F = ma$$

work, energy and
$$W = Fs \cos \theta$$

power $E_K = \frac{1}{2}m v^2$ $\Delta E_P = mg\Delta h$
 $P = \frac{\Delta W}{\Delta t}$, $P = Fv$

$$efficiency = \frac{\text{useful output power}}{\text{input power}}$$

MATERIALS

density
$$\rho = \frac{m}{V}$$
 Hooke's law $F = k \Delta L$

Young modulus =
$$\frac{\text{tensile stress}}{\text{tensile strain}}$$
 tensile stress = $\frac{F}{A}$ tensile strain = $\frac{\Delta L}{L}$

stored

WAVES

wave speed
$$c = f\lambda$$
 period $T = \frac{1}{f}$
fringe $spacing$ $w = \frac{\lambda D}{s}$ diffraction $d \sin \theta = n\lambda$ grating

refractive index of a substance s,
$$n = \frac{c}{c_s}$$

for two different substances of refractive indices n_1 and n_2 ,

law of refraction
$$n_1 \sin \theta_1 = n_2 \sin \theta_2$$

critical angle
$$\sin \theta_{\rm c} = \frac{n_2}{n_1} \text{ for } n_1 > n_2$$

A2 FORMULAE

MOMENTUM

force
$$F = \frac{\Delta(mv)}{\Delta t}$$

impulse
$$F \Delta t = \Delta(mv)$$

CIRCULAR MOTION

angular velocity
$$\omega = \frac{v}{r}$$

centripetal acceleration
$$a = \frac{v^2}{r} = \omega^2 r$$

centripetal force
$$F = \frac{mv^2}{r} = m\omega^2 r$$

OSCILLATIONS

acceleration
$$a = -(2\pi f)^2 x$$

displacement $x = A \cos(2\pi f t)$
speed $v = \pm 2\pi f \sqrt{A^2 - x^2}$

maximum speed
$$v_{\text{max}} = 2\pi f A$$

maximum acceleration $a_{\text{max}} = (2\pi f)^2 A$
for a mass-spring system $T = 2\pi \sqrt{\frac{m}{k}}$

for a simple pendulum
$$T = 2\pi \sqrt{\frac{l}{g}}$$

electric potential

$$\Delta W = Q\Delta V$$

$$V = \frac{1}{4\pi\varepsilon_0} \frac{Q}{r}$$

capacitance
$$C = \frac{Q}{V}$$

decay of charge
$$Q = Q_0 e^{-t/RC}$$

capacitor
$$E = \frac{1}{2} QV = \frac{1}{2} CV^2 = \frac{1}{2} \frac{Q^2}{C}$$
 energy stored

MAGNETIC FIELDS

force on a current	F = BIl
force on a moving charge	F = BQv
magnetic flux	$\Phi = BA$
magnetic flux linkage	$N\Phi = BAN$
magnitude of induced emf	$\varepsilon = N \frac{\Delta \Phi}{\Delta r}$
	$\frac{c}{\Delta t}$

emf induced in a rotating coil
$$N\Phi = BAN\cos\theta$$
$$\varepsilon = BAN\omega\sin\omega t$$

transformer equations
$$\frac{N_s}{N_p} = \frac{V_s}{V_p}$$

efficiency =
$$\frac{I_s V_s}{I_p V_p}$$

GRAVITATIONAL FIELDS

force between two
$$F = \frac{G m_1 m_2}{r^2}$$

gravitational field
$$g = \frac{F}{m}$$

magnitude of gravitational field
$$g = \frac{GM}{r^2}$$
 strength in a radial field gravitational potential $\Delta W = m\Delta V$

$$V = -\frac{GM}{r}$$

$$\Delta V$$

$$g = -\frac{\Delta V}{\Delta r}$$

RADIOACTIVITY AND NUCLEAR PHYSICS

the inverse square law for
$$\gamma$$

$$I = \frac{k}{x^2}$$

radioactive decay
$$\frac{\Delta N}{\Delta t} = -\lambda N, N = N_o e^{-\lambda t}$$

$$\Delta t$$
activity
$$A = \lambda N$$

half-life
$$T_{V_2} = \frac{\ln 2}{\lambda}$$

nuclear radius
$$R = r_0 A^{1/3}$$

energy-mass equation
$$E = m c^2$$

ELECTRIC FIELDS AND CAPACITORS

force between two point
$$F = \frac{1}{4\pi\epsilon_0} \frac{Q_1 Q_2}{r^2}$$

force on a charge
$$F = EQ$$

field strength for a
$$E = \frac{V}{d}$$
 uniform field

field strength for a radial
$$E = \frac{Q}{4\pi\epsilon_0 r^2}$$

GASES AND THERMAL PHYSICS

$$gas \ law \qquad \qquad pV = n \ R \ T$$

$$pV = NkT$$

kinetic theory model
$$pV = \frac{1}{3} N m (c_{\text{rms}})^2$$

kinetic energy of gas
$$\frac{1}{2} m (c_{rms})^2 = \frac{3}{2} kT = \frac{3RT}{2 N_A}$$

energy to change
temperature
$$Q = mc\Delta T$$

energy to change state $Q = m l$

OPTIONS FORMULAE

ASTROPHYSICS

1 astronomical unit = 1.50×10^{11} m

1 light year = 9.46×10^{15} m

1 parsec = $206265 \text{ AU} = 3.08 \times 10^{16} \text{ m} = 3.261 \text{yr}$

Hubble constant, $H = 65 \text{ km s}^{-1} \text{ Mpc}^{-1}$

lens equation

$$\frac{1}{f} = \frac{1}{u} + \frac{1}{v}$$

angle subtended by image at eye angle subtended by object at unaided eve

in normal adjustment

$$M = \frac{f_0}{f_e}$$

resolving power

$$\theta \approx \frac{\lambda}{D}$$

magnitude equation

$$m - M = 5 \log \frac{d}{10}$$

Wien's law

$$\lambda_{\text{max}} T = 0.0029 \text{ m K}$$

Hubble law

$$v = H d$$

Stefan's law

$$P = \sigma A T^4$$

Doppler shift for
$$v \ll c$$
 $z = \frac{\Delta f}{f} = -\frac{\Delta \lambda}{\lambda} = \frac{v}{c}$

Schwarzschild radius

$$R_{\rm s} = \frac{2GM}{c^2}$$

MEDICAL PHYSICS

lens equations

$$P = \frac{1}{t}$$

$$m=\frac{v}{u}$$

$$\frac{1}{f} = \frac{1}{u} + \frac{1}{v}$$

intensity level

intensity level =
$$10 \log \frac{I}{I_0}$$

absorption

$$I = I_0 e^{-\mu x}$$

$$\mu_m = \frac{\mu}{\rho}$$

APPLIED PHYSICS

moment of inertia

$$I = \sum mr^2$$

angular kinetic energy

$$E_{\rm k} = \frac{1}{2} I \omega^2$$

equations of angular

motion

$$\omega_2 = \omega_1 + \alpha t$$

$$\omega_2^2 = \omega_1^2 + 2\alpha\theta$$

$$\theta = \omega_1 t + \frac{1}{2} \alpha t^2$$

$$\theta = \frac{1}{2} (\omega_1 + \omega_2) t$$

 $T = I \alpha$ torque

angular momentum angular momentum = $I\omega$

work done $W = T\theta$ power $P = T\omega$ $Q = \Delta U + W$ thermodynamics

 $W = p\Delta V$

adiabatic change $pV^{\gamma} = constant$

isothermal change pV = constant

heat engines

efficiency =
$$\frac{W}{Q_{in}} = \frac{Q_{in} - Q_{out}}{Q_{in}}$$

$$\frac{T_H - T_C}{T_H}$$

work done per cycle = area of loop

input power = calorific value × fuel flow rate

(area of p-V loop) × (no of cycles *indicated power =* per second) × number of cylinders

output of brake power $P = T \omega$

friction power = indicated power – brake power

heat pumps and refrigerators

refrigerator: $COP_{ref} = \frac{Q_{out}}{W} = \frac{Q_{out}}{Q_{in} - Q_{out}}$

heat pump: $COP_{hp} = \frac{Q_{in}}{W} = \frac{Q_{in}}{Q_{in} - Q_{out}}$

TURNING POINTS IN PHYSICS

electrons in fields

$$F = \frac{eV}{d}$$

$$F = Bev$$

$$r = \frac{mv}{R\varrho}$$

$$1/2 mv^2 = eV$$

$$\frac{QV}{d} = mg$$

$$F = 6\pi \eta r v$$

 $c = \frac{1}{\sqrt{\mu_0 \, \varepsilon_0}}$ wave particle duality

$$\lambda = \frac{h}{p} = \frac{h}{\sqrt{2meV}}$$

special

$$E = mc^{2} = \frac{m_{0}c^{2}}{\left(1 - \frac{v^{2}}{c^{2}}\right)^{\frac{1}{2}}}$$

$$l = l_0 \left(1 - \frac{v^2}{c^2} \right)^{\frac{1}{2}} \qquad t = t_0 \left(1 - \frac{v^2}{c^2} \right)^{-\frac{1}{2}}$$